Skip to content Skip to sidebar

Site logo

  • Home
  • Videos
  • Clinical studies
  • White papers
  • Wellness facts
  • History
  • Contact
  • About us
Date: September 29, 2016 Author: admin Comments: 0
  • Category Clinical studies

The prolactin responses to active and passive heating in man.

The aim of this study was to compare the prolactin and blood pressure responses at identical core temperatures during active and passive heat stresses, using prolactin as an indirect marker of central fatigue. Twelve male subjects cycled to exhaustion at 60% maximal oxygen uptake (VO2peak) in a room maintained at 33 degrees C (active). In a second trial they were passively heated (passive) in a water bath (41.56 +/- 1.65 degrees C) until core temperature was equal to the core temperature observed at exhaustion during the active trial. Blood samples were taken from an indwelling venous cannula for the determination of serum prolactin during active heating and at corresponding core temperatures during passive heating. Core temperature was not significantly different between the two methods of heating and averaged 38.81 +/- 0.53 and 38.82 +/- 0.70 degrees C (data expressed as means +/- s.d.) at exhaustion during active heating and at the end of passive heating, respectively (P > 0.05). Mean arterial blood pressure was significantly lower throughout passive heating (active, 73 +/- 9 mmHg; passive, 62 +/- 12 mmHg; P < 0.01). Despite the significantly reduced blood pressure responses during passive heating, during both forms of heating the prolactin response was the same (active, 14.9 +/- 12.6 ng ml(-1); passive, 13.3 +/- 9.6 ng ml(-1); n.s.). These results suggest that thermoregulatory, i.e. core temperature, and not cardiovascular afferents provide the key stimulus for the release of prolactin, an indirect marker of central fatigue, during exercise in the heat.

Source: www.ncbi.nlm.nih.gov

Post navigation

Previous Post Catecholamine response to exercise in children with attention deficit hyperactivity disorder.
Next Post Exercise in the Heat. II. Critical Concepts in Rehydration, Exertional Heat Illnesses, and Maximizing Athletic Performance

The section contains widgets

Account member

  • Login
    • Sign up
    • Change Password

Benefit topic

Choose a keyword

Acclimation|Addiction|Aging Alcoholism|Alzheimers disease| Appetite
------------------------------------
BDNF|Biomechanical adaptations|Blood-cells|Blood pressure|Body-composition|Brain|Brain lymphatic
------------------------------------
Calories | Cancer | Cardiovascular adjustments | Catecholamines Chronic fatigue syndrome | Chronic Traumatic Encephalopathy (CTE) | Cognition | Core temperature
------------------------------------
Depression | Diabetes | Diet | Drug-use
------------------------------------
Endocrine-system | Endorphins Energy expenditure | Exercise Exercise in heat
------------------------------------
Fatigue | Fibromyalgia | Fitness | Flexibility | Fox O3 gene
------------------------------------
Glucose tolerance | Glycogen
------------------------------------
Head cooling | Health benefits Heart disease | Heat | Heat acclimation | Heat stress | Heat treatment | Hgh | Hormonal response | Hsps | Hyperthermia
------------------------------------
Insulin
------------------------------------
Lactate-threshold | Learning | Longevity | Lymphatic-system
------------------------------------
Meditation|Memory | Metabolism|Muscle adaptation|Muscle-metabolism & circulation|Muscle re-growth/Reduce atrophy
------------------------------------
Neurogenesis|Norepinephrine
------------------------------------
Obesity
------------------------------------
Pain | Prolactin
------------------------------------
Range-of-motion | Relaxation Research
------------------------------------
Sauna | Sleep | Strength-training | Stress | Sweating
------------------------------------
Telomeres | Thermal therapy | Thermogenesis | Thermoregulatory adaptations Thermotolerance
------------------------------------
Weight-loss

The section contains information on copyright and first-level footer navigation

Copyright © 2023

  • Home
  • Videos
  • Clinical studies
  • White papers
  • Wellness facts
  • History
  • Contact
  • About us