Skip to content Skip to sidebar

Site logo

  • Home
  • Videos
  • Clinical studies
  • White papers
  • Wellness facts
  • History
  • Contact
  • About us
Date: September 29, 2016 Author: admin Comments: 0
  • Category Clinical studies

Catecholamine response to exercise in children with attention deficit hyperactivity disorder.

The objective of this study was to examine differences in catecholamine (CA) response to exercise between children who had received a diagnosis of attention-deficit/hyperactivity disorder (ADHD) and age- and gender-matched controls. On the basis of the notion of a CA dysfunction in ADHD, we reasoned that the normal robust increase in circulating CA seen in response to exercise would be blunted in children with ADHD. To test this, we recruited 10 treatment-naïve children with newly diagnosed ADHD and 8 age-matched controls (all male) and measured CA response to an exercise test in which the work was scaled to each subject’s physical capability. After exercise, epinephrine and norepinephrine increased in both control and ADHD subjects (p = 0.006 and p = 0.002, respectively), but the responses were substantially blunted in the ADHD group (p = 0.018) even though the work performed did not differ from controls. Circulating dopamine increased significantly in the control subjects (p < 0.016), but no increase was noted in the subjects with ADHD. Finally, a significant attenuation in the lactate response to exercise was found in ADHD (between groups, p < 0.005). Our data suggest that CA excretion after exercise challenges in children with ADHD is deficient. This deficiency can be detected using a minimally invasive, nonpharmacologic challenge.

Source: www.ncbi.nlm.nih.gov

Post navigation

Previous Post Endocrine effects of repeated sauna bathing.
Next Post The prolactin responses to active and passive heating in man.

The section contains widgets

Account member

  • Login
    • Sign up
    • Change Password

Benefit topic

Choose a keyword

Acclimation|Addiction|Aging Alcoholism|Alzheimers disease| Appetite
------------------------------------
BDNF|Biomechanical adaptations|Blood-cells|Blood pressure|Body-composition|Brain|Brain lymphatic
------------------------------------
Calories | Cancer | Cardiovascular adjustments | Catecholamines Chronic fatigue syndrome | Chronic Traumatic Encephalopathy (CTE) | Cognition | Core temperature
------------------------------------
Depression | Diabetes | Diet | Drug-use
------------------------------------
Endocrine-system | Endorphins Energy expenditure | Exercise Exercise in heat
------------------------------------
Fatigue | Fibromyalgia | Fitness | Flexibility | Fox O3 gene
------------------------------------
Glucose tolerance | Glycogen
------------------------------------
Head cooling | Health benefits Heart disease | Heat | Heat acclimation | Heat stress | Heat treatment | Hgh | Hormonal response | Hsps | Hyperthermia
------------------------------------
Insulin
------------------------------------
Lactate-threshold | Learning | Longevity | Lymphatic-system
------------------------------------
Meditation|Memory | Metabolism|Muscle adaptation|Muscle-metabolism & circulation|Muscle re-growth/Reduce atrophy
------------------------------------
Neurogenesis|Norepinephrine
------------------------------------
Obesity
------------------------------------
Pain | Prolactin
------------------------------------
Range-of-motion | Relaxation Research
------------------------------------
Sauna | Sleep | Strength-training | Stress | Sweating
------------------------------------
Telomeres | Thermal therapy | Thermogenesis | Thermoregulatory adaptations Thermotolerance
------------------------------------
Weight-loss

The section contains information on copyright and first-level footer navigation

Copyright © 2023

  • Home
  • Videos
  • Clinical studies
  • White papers
  • Wellness facts
  • History
  • Contact
  • About us