Skip to content Skip to sidebar

Site logo

  • Home
  • Videos
  • Clinical studies
  • White papers
  • Wellness facts
  • History
  • Contact
  • About us
Date: September 26, 2016December 13, 2016 Author: admin Comments: 0
  • Category Clinical studies
  • Category Hyperthermia & Brain-Derived Neurotrophic Factor (BDNF)
  • Category Hyperthermic Weight Loss

The Skinny on Brain-Derived Neurotrophic Factor: Evidence from Animal Models to GWAS.

Obesity and its sequelae constitute a major international healthcare problem. The obesity epidemic is due in part to higher calorie diets and reduced exercise over the past 30 years, however, increasing evidence has established genetic regulation of body weight as a major contributor to obesity. Brain-derived neurotrophic factor (BDNF) regulates development and plasticity of the central nervous system, and recent work has established a clear role for signaling through BDNF and its receptor TrkB in the control of body weight. Here we review research findings from animal models and human populations indicating that BDNF is a negative regulator of appetitive behavior and body weight.

Keywords: BDNF, TrkB, single nucleotide polymorphism, human obesity, hypothalamus

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815745/

  • #BDNF
  • #Calories
  • #Obesity
  • #Weight loss

Post navigation

Previous Post Voluntary exercise or amphetamine treatment, but not the combination, increases hippocampal brain-derived neurotrophic factor and synapsin I following cortical contusion
Next Post Association Between Sauna Bathing and Fatal Cardiovascular and All-Cause Mortality Events.

The section contains widgets

Account member

  • Login
    • Sign up
    • Change Password

Benefit topic

Choose a keyword

Acclimation|Addiction|Aging Alcoholism|Alzheimers disease| Appetite
------------------------------------
BDNF|Biomechanical adaptations|Blood-cells|Blood pressure|Body-composition|Brain|Brain lymphatic
------------------------------------
Calories | Cancer | Cardiovascular adjustments | Catecholamines Chronic fatigue syndrome | Chronic Traumatic Encephalopathy (CTE) | Cognition | Core temperature
------------------------------------
Depression | Diabetes | Diet | Drug-use
------------------------------------
Endocrine-system | Endorphins Energy expenditure | Exercise Exercise in heat
------------------------------------
Fatigue | Fibromyalgia | Fitness | Flexibility | Fox O3 gene
------------------------------------
Glucose tolerance | Glycogen
------------------------------------
Head cooling | Health benefits Heart disease | Heat | Heat acclimation | Heat stress | Heat treatment | Hgh | Hormonal response | Hsps | Hyperthermia
------------------------------------
Insulin
------------------------------------
Lactate-threshold | Learning | Longevity | Lymphatic-system
------------------------------------
Meditation|Memory | Metabolism|Muscle adaptation|Muscle-metabolism & circulation|Muscle re-growth/Reduce atrophy
------------------------------------
Neurogenesis|Norepinephrine
------------------------------------
Obesity
------------------------------------
Pain | Prolactin
------------------------------------
Range-of-motion | Relaxation Research
------------------------------------
Sauna | Sleep | Strength-training | Stress | Sweating
------------------------------------
Telomeres | Thermal therapy | Thermogenesis | Thermoregulatory adaptations Thermotolerance
------------------------------------
Weight-loss

The section contains information on copyright and first-level footer navigation

Copyright © 2023

  • Home
  • Videos
  • Clinical studies
  • White papers
  • Wellness facts
  • History
  • Contact
  • About us